Contents

Preface xi
Acknowledgments xiii

Chapter 1 Introduction 1
The role of seismic data in oil and gas exploration 1
Source rock 1
Migration pathway 2
Reservoir 3
Trap 3
Seal 4
Timing 5
Product 5
Seismic facies and pattern recognition 6
Seismic attributes 15
Interactive interpretation versus machine learning 15
Seismic attributes as the framework for data integration 18
The structure of this book 22

Chapter 2 Seismic Attributes and What They Measure 25
Introduction 25
Reflector configuration attributes 27
Time-structure maps 27
Horizon dip azimuth and dip magnitude 27
Volumetric dip azimuth and dip magnitude 31
Curvature 39
Aberrancy 57
Reflector convergence (parallelism) 66
Reflector rotation 71
Discontinuity attributes 73
Coherence 73
Sobel filter similarity 79
Relationships between coherence and structural curvature 81
Amplitude gradient 83
Amplitude curvature 87
Diffraction imaging 91
Texture attributes 94
The gray-level co-occurrence matrix (GLCM) 94
GLCM texture attributes 97
Spectral attributes 104
Spectral voice, magnitude, and phase components 105
Peak spectral magnitude, phase, and frequency
Impedance attributes
Acoustic impedance
Model-based inversion
Geostatistical inversion
Azimuthal anisotropy
Vertical transverse isotropy
Horizontal transverse isotropy (azimuthal anisotropy)
Orthotropic anisotropy
Interpreter-driven anisotropy analysis of azimuthal anisotropy
Time-lapse attributes
Summary

Chapter 3 Postmigration Data Conditioning and Image Enhancement

Introduction
Data conditioning
Spectral balancing and spectral bluing
Bandwidth extension
Structure-oriented filtering
Footprint suppression
Residual moveout
Coherent noise suppression
Limitations to postmigration data conditioning
Image processing
Fault enhancement
Skeletonization
Feature segmentation
Summary

Chapter 4 The Exploration Stage of the Oilfield Life Cycle

Introduction
Available data and data-integration techniques
Seismic data scoping and initial interpretation
Traditional attribute interpretation
Volumetric attributes
Data integration using principles of geomorphology, modern analogs and paleoanalogs, and 3D visualization
Data integration using principles of sequence stratigraphy and seismic chronostratigraphy software
Data integration using modern analogs, paleoanalogs, and principles of tectonic deformation
Crossplotting
Data integration and machine learning
Projections, manifolds, and clustering using self-organizing maps
Generative topographic maps (GTMs) 237
Preconditioning volumetric attributes for subsequent clustering 244
Summary 261

Chapter 5 The Development Stage of the Oilfield Life Cycle 263
Introduction 263
Data availability, and data-integration techniques 263
Faults, fractures, and the tectonic framework 264
Data integration through forward modeling, inversion, and neural networks 264
Constructing fracture proxies 265
Predicting fractures using principles of tectonic deformation 265
Constructing petrophysical templates and a Bayesian classification 275
Predicting porosity and lithology using impedance inversion and rock-physics templates 275
Model-based inversion 276
Extended elastic impedance and multiattribute rotation 282
Geostatistical inversion 286
Predicting log properties and seismic facies with supervised learning 287
Using probabilistic neural networks (PNNs) to predict log properties 287
Multilayer feedforward networks (MLFNs) and prediction of discrete classes 292
Correlating attributes to good wells and poor ones 303
Correlating producing wells to attributes by using GTM 307
Summary 312

Chapter 6 The Mature Stage of the Oilfield Life Cycle 315
Introduction 315
Data availability and data-integration techniques 315
Reinvigorating mature fields with modern 3D seismic surveys 318
The value of megamerge seismic surveys 318
Correlating production to fault proximity 328
Use of 3D surveys to monitor reservoir parameters in large, mature fields 339
Building more accurate geocellular models 339
Analysis of borehole stability 339
Time-lapse seismic acquisition 344
Repurposing depleted oil fields for CO₂ sequestration 349
Summary 353

Chapter 7 Data Integration During the Rebirth Stage of the Oilfield Life Cycle: Resource Plays 355
Introduction 355
Data availability, and data-integration techniques 359
Geohazards
Identifying productive areas
Depositional environment
Expected ultimate recovery, hydraulic fracturing, and monitoring of microseismic events
Correlation of microseismic events to structural attributes
Completion and geomechanical properties
Multiattribute analysis
Estimating the horizontal stress field
Summary

Chapter 8 Data Integration and a Profile of the Future Interpreter

Introduction
The future interpreter
Future technology
 Improved measurements
Advances in science
 Improved software
 Critical next steps
Summary

Appendix A Concepts of Linear Algebra — Correlation, Linear Regression, Covariance Matrices, Eigenvectors, and Principal Components

Crosscorrelation and linear regression
 Crosscorrelation
 Linear regression
 Exploratory data analysis
 Multilinear regression
The covariance matrix
 Sample vectors
 The covariance matrix
 Data normalization
Eigenvectors and eigenvalues
 Mathematical definition
 Physical interpretation of eigenvalues and eigenvectors
Principal components
 Principal components and Karhunen-Loève filtering
 Pitfalls in eigenvector, eigenvalue, and principal-component computations

Appendix B Multiattribute Display

Introduction
 RGB, CMY, HLS, and alpha blending
Contents

Opacity 454
Blending in PowerPoint 2010 455
Simulating HLS in PowerPoint 455

References 459
Index 479